
LA-UR-19-29712
Approved for public release; distribution is unlimited.

Title: Asynchronous Navier-Stokes Solver on 3D Unstructured Grids for the
Exascale Era

Author(s): Bakosi, Jozsef; Bird, Robert Francis; Junghans, Christoph; Pandare,
Aditya Kiran; Pavel, Robert Stephen; Waltz, Jacob I.; Li, Weizhao;
Luo, Hong; Bohm, Eric; Kale, Laxmikant; Mikida, Eric; Ramos, Evan;
Barnett, Joshua; Collins, Gary; Pakki, Aditya

Intended for: Report
Web

Issued: 2019-09-26

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Asynchronous Navier-Stokes Solver on 3D Unstructured Grids
for the Exascale Era
Final Report for LDRD-20170127-ER, LA-UR-XX-XXXXX
September 24, 2019

J. Bakosi, R. Bird, C. Junghans, A. Pandare, R. Pavel, J. Waltz, Los Alamos National Laboratory
W. Li, H. Luo, North Carolina State Universtiy
E. Bohm, L. Kale, E. Mikida, E. Ramos, Charmworks, Inc.
J. Barnett, Georgia Institute of Technology, G. Collins, University of Tennessee, A. Pakki, University of Utah

1 Summary
This project has developed multiple fluid dynamics solvers for complex 3D flows using fully asynchronous
distributed-memory task-parallel algorithms on top of the Charm++ [1] runtime system. The algorithms
solve the Euler or Navier-Stokes equations of compressible flows using unstructured tetrahedron meshes
with optional solution-adaptive mesh-, and polynomial-order refinement. We have demonstrated excellent
strong scaling up 50K compute cores and the benefits of Charm++’s automatic load balancing.

2 Accomplishments at a glance
• Implemented the first unstructured-mesh partial differential equations (PDE) solver on the Charm++

runtime system with automatic load balancing.
• Demonstrated, for the first time, that excellent parallel performance can be achieved using Charm++

of a PDE solver on unstructured grids, useful for complex 3D engineering problem geometries.
• Implemented both node-centered and cell-centered finite element algorithms for the simulation of

compressible high-speed flows. All algorithms are in 3D, fully asynchronous, task-based, distributed-
memory-parallel, and exhibit excellent strong scaling up to 50K CPU cores, the most tested.
• Developed and implemented a new adaptive DG algorithm that automatically adjusts the order of

the approximation polynomial based on local error estimators and exercised it for single-material
verification cases on 3D unstructured meshes with Charm++’s automatic load balancing capabilities.
• Developed, implemented, and verified a new DG method for compressible multi-material flows.
• Implemented adaptive mesh refinement in 3D using an, asynchronous distributed-memory-, task-

parallel algorithm.
• Developed the code in a production fashion, with extensive unit-, and regression test suites and high-

degree of code reuse using the C++17 standard. Also exercise mandatory code reviews, test code
coverage analysis, using LANL-internal and public-facing continuous integration servers.
• Implemented various code capabilities that enable large-scale fluid dynamics, e.g., file/rank N-to-M

parallel I/O, checkpoint/restart, and compile-time-configurable zero-runtime-overhead memory lay-
out for large-data arrays to enable enable performance-portability across different architectures.
• Released the code as open source, see https://quinoacomputing.org.

https://quinoacomputing.org

3 A brief overview of Charm++

Interacting objects, (left) programmer’s view, (right) the runtime system’s view.

We have designed a fully asynchronous code
on top of the Charm++ runtime system [1].
Although Charm++ is mature (20+ years) and
used by several large production codes, in-
cluding the Gordon Bell award winner molec-
ular dynamics code, NAMD, with thousands
of users, it is not currently explored for
unstructured-mesh applications or within LANL or DOE. Charm++ is founded on the migratable-objects
programming model and supported by an adaptive runtime system. In Charm++ data and work-units inter-
act via asynchronous function calls which may reside on the same or on a networked compute node, and may
migrate from one to another during computation. Object migration is based on real-time load measurement
and is transparent to the application. The runtime system dynamically and automatically adapts the compu-
tational load monitoring load-imbalance and migrates data and work-units if it notices that a compute node
failed or is about to fail, enabling fault tolerance. Since the underlying programming paradigm of Charm++
is higher level than MPI+X, in Charm++ distributed-memory sends and receives may operate on (safe) cus-
tom data structures (instead of low level byte-streams), e.g., containers built on C++ standard library vectors,
trees, or hash maps, or arbitrary user-defined data types. We have demonstrated that communication using
such high level data structures yields an unmeasurable performance hit when compared to useful computa-
tion (see figures from Projections below). The Charm++ paradigm is the single abstraction the code uses,
and while still allow the reuse of existing MPI-only libraries, e.g., Zoltan, Hypre, ExodusII, HDF5, etc., it
also allows the combination of fully asynchronous data and task parallelism, enabling arbitrary overlap of
communication, computation, and I/O, enabling high performance.

We did not have to write any load balancing code. We simply write an algorithm and the runtime
system automatically detects CPU load and homogenizes the computational load by migrating data.

4 Production-style code infrastructure
While not strictly required for the research and development set out in the proposal for this project, we be-
lieve that writing software in production-style, as opposed to research-style, is a good investment regarding
the future utility of the code. Accordingly, we have invested a significant fraction of our time in software
quality, modern development practices, testing, and generating easy-to-use documentation. We have set up
a software development infrastructure with the following features and configuration:

• 102K source lines of well-commented code (every 3rd line is a comment)
• Building on 28 high-quality third-party libraries
• Unit-, and regression tests, routinely excercise 3 compilers (86% test code coverage)
• Open source: https://github.com/quinoacomputing/quinoa
• Latest releases as LANL copyright (re-)assertions at
https://github.com/quinoacomputing/quinoa/releases
• Core Infrastructure Initiative Best Practices self-assessment at
https://bestpractices.coreinfrastructure.org/en/projects/2120
• Detailed roadmap and contributing guide for open source collaboration
• Mandatory code review, github work-flow (crucial for efficient external collaboration)
• Continuous integration (build & test matrix) with Azure & TeamCity
• Continuous quantified test code coverage with Gcov & CodeCov.io
• Continuous quantified documentation coverage with CodeCov.io
• Continuous static analysis with CppCheck & SonarQube
• Continuous deployment (of binary releases) to DockerHub

2

https://www.openhub.net/p/quinoacomputing
https://quinoacomputing.org/licenses.html
https://quinoacomputing.org/coverage.html
https://github.com/quinoacomputing/quinoa
https://github.com/quinoacomputing/quinoa/releases
https://bestpractices.coreinfrastructure.org/en/projects/2120
https://quinoacomputing.org/roadmap.html
https://quinoacomputing.org/contributing.html
https://dev.azure.com/quinoacomputing/Quinoa
http://lagrange.lanl.gov:8111
https://quinoacomputing.org/coverage.html
https://codecov.io/gh/quinoacomputing/quinoa
https://quinoacomputing.org
https://codecov.io/gh/quinoacomputing/quinoa
https://quinoacomputing.org/coverage.html
https://sonarqube.com/organizations/quinoacomputing
https://hub.docker.com/r/quinoacomputing/quinoa

5 Hydrodynamics algorithms
This section gives a high-level overview of the hydrodynamics algorithms we have implemented during the
course of this project to solve the Euler and Navier-Stokes equations. They are all finite element methods
for 3D tetrahedra meshes.

5.1 Node-centered continuous Galerkin finite element method

900

1800

2520

3600

7200

14400
21600

36000

360

540
720

900

1800

3600

7200

14400

28800

10
2

10
3

10
4

10
5

Number of CPU cores (36/node)

10
1

10
2

10
3

10
4

W
al

l
cl

o
ck

 t
im

e,
 s

ec

Navier-Stokes, MatCG, RCB

Navier-Stokes, MatCG, MJ

DiagCG
ideal

Compressible Euler/Navier-Stokes, 794M
(100 time steps, no I/O)

ideal

Strong scaling of the consistent-mass-matrix (MatCG) and
lumped-mass-matrix (DiagCG) node-centered finite element
solvers on grizzly. MJ and RCB denote two different types of ini-
tial mesh decomposition algorithms from the Zoltan2 library: MJ:
multi-jagged, RCB: recursive coordinate bisection.

In the interest of space the methods are not derived here,
instead the reader is referred to [2], only some implemen-
tation details are given.

This method stores the solution unknowns at mesh
points, as opposed to cell centers, and employs linear fi-
nite element shape functions for spatial approximation of
the numerical solution across discrete elements. The spa-
tial discretization results in a N×N linear system of alge-
braic equations, where N is the number of mesh nodes in
the computational mesh. The system is integrated in time
using an explicit Lax-Wendroff-type method, adopted to
unstructured meshes. We verified that this method is
second-order accurate for continuous solutions [3, 4].
For large gradients, shocks and other discontinuities, we
also implemented a flux-corrected transport algorithm.

In parallel, the matrix is stored in a distributed fashion. Initially we stored each non-zero entry of the
matrix in a compressed-row storage format, and solved it using a conjugate gradient algorithm from the
hypre library available from LLNL. We wrote the matrix assembly in a fully asynchronous distributed-
memory-parallel fashion relying on Charm++’s task-parallelism via their structured direct acyclic graph
(SDAG) constructs. For more information on the asynchronous parallel matrix assembly, see [5]. To make
this solver work, we successfully connected three MPI-only third-party libraries to our otherwise native
Charm++ code: Zoltan2 (used for initial parallel mesh partitioning), hypre (used for solving distributed
linear systems), and ExodusII (or SEACAS, used for parallel input of the computational mesh and output
of the solution field data for visualization). Charm++/MPI interoperation allows reusing existing MPI-only
libraries, although without Charm++’s automatic load balancing for the duration of the MPI library calls.
The scalability of this matrix-based solver was reasonable (close to ideal up to about 20K CPU cores, but
beyond that the frequent calls to parallel dot-products by the conjugate algorithm within hypre started to
dominate and scalability was limited, see figure above. We then changed the solver to use a lumped mass
matrix, which is not only much simpler to assemble and faster to solve, but also does not require a linear
solver, so we eliminated hypre. This significantly improved scalability, see the figure above.

We have also experimented with overdecomposition, where the computational mesh is decomposed
into more than the number of CPUs assigned. We have gained much insight from this, e.g., by exercising
overdecomposition very large performance gains are possible without modification of the code, see also the
figure on the next page. Though such improvements are problem-, and hardware-dependent, there is always
an optimum spot that yields a significant improvement. Overdecomposition and writing a parallel code that
enables overdecomposition are always advised by the Charm++ developers, as this universally leads to more
flexibility and better performance. This is partly due to more efficient load balancing (using smaller work
units), and partly due to the smaller work units using local CPU caches more effectively.

5.2 Solution-adaptive cell-centered discontinuous Galerkin finite element method

A discontinuous Galerkin (DG) finite element method [6] has been implemented with a solution-dependent
p-adaptation. The DG method uses the Dubiner basis functions [7, 8] on unstructured tetrahedral grids.

3

1 5 10 100

#chares / #CPUs

0

1

2

3

4

5

n
o

rm
al

iz
ed

 t
o

ta
l

ru
n

ti
m

e

17K cells, 4CPUs

90K cells, 64CPUs

Speedup due to overdecomposition (incl. setup, I/O time)
Compressible Navier-Stokes on 3D unstructured mesh

320 partitions
on 64 CPUs:
11.2x speedup

classic MPI

Lower
is better

1 5 10 100

#chares / #CPUs

0

1

2

3

4

5

n
o

rm
al

iz
ed

 t
im

e
st

ep
p

in
g

 r
u

n
ti

m
e

90K cells, 64CPUs

Speedup due to overdecomposition (w/o setup time)
Compressible Navier-Stokes on 3D unstructured mesh

6038 partitions
on 64 CPUs:
47.1x speedup

classic MPI

Lower
is better

Large performance-improvements due to overdecomposition without load balancing, and most importantly, without any changes to the source code.

These polynomials are orthogonal, meaning that the only non-zero inner products in the L2 space are their
self-projections. This leads to a diagonal mass-matrix, obviating the need for a matrix-inversion and a matrix
solver, similar to the lumped-mass node-centered solver, discussed above. Moreover, since the basis for the
solutions are orthogonal, they are represented more accurately.

Density contours (top) and line-output (bottom) for the
single-material Sod shock tube problem. p-adaptation
yields 2nd order DG (yellow) cells near solution gradients
and 1st order FV (black) cells otherwise.

The DG method uses a 3rd-order Runge-Kutta time
integrator [9] and a total-variation-diminishing Super-
bee slope limiter to obtain stable solutions in the pres-
ence of discontinuities such as shock waves. This
is combined with a solution-dependent polynomial, p–
adaptation, strategy. The basic idea of p-adaptation in-
volves switching to lower-order (hence cheaper) polyno-
mial basis in areas of near-constant solution states. This
can tremendously reduce computation costs without sacrificing accuracy, which stays efficient even in par-
allel when combined with a load-balancing strategy. The key component of an accurate and efficient p-
adaptive algorithm is the indicator function [10] used for polynomial refinement or de-refinement.

Processor utilization without (left) and with (right) load balancing employing the p–adaptive DG algorithm on a laptop with 8 CPU
cores. Left: traditional MPI-style computation without load balancing, right: load balancing using Charm++’s automatic object
migration. The green areas show active times, and white show idle times. Even in this case on a laptop load balancing dramatically
improves processor utilization and increases computational speed by almost 2x.

4

Processor utilization without (left) and with (right) load balancing employing the p–adaptive DG algorithm on a 120-million-cell
mesh on 1K CPUs on grizzly. The green areas show active times, and white show idle times. Without load balancing 20% of the
CPUs are at 90% usage, the remainder are at 30% usage. With load balancing all CPUs are at 75% usage, the rest is communication
and load balancing costs. In this case the speed-up compared to the unbalanced case is approximately 1.7x.

360

540
720

900

1800

3600

7200

14400

28800

540

720
900

1800

3600

7200

14400

28800

36000

50400

900

1800

3600

7200

14400

28800

50400

10
2

10
3

10
4

10
5

Number of CPU cores (36/node)

10
1

10
2

10
3

10
4

W
al

l
cl

o
ck

 t
im

e,
 s

ec

DiagCG, non-SMP

DG(P0), non-SMP

DG(P1), non-SMP

DG(P1), SMP

ideal

Single-material hydro, 794M
(100 time steps, no I/O)

ideal

Strong scaling of our continuous and discontinuous Galerkin fi-
nite element hydro solvers on grizzly. SMP here means that
Charm++ is running in SMP mode, which is Charm++’s equiva-
lent of MPI+X where message-based communication is only used
on the network, i.e., across compute nodes and not within nodes.

One of the error estimators we used for local p–
refinement is the spectral decay indicator:

ηe =
||ρe,p−ρe,p−1||L2

||ρe,p||L2

,

where, the subscript p indicates the high-order solution,
and p−1 indicates its projection to a lower-order space.
This indicator is calculated for each mesh element e.
This element is marked for refinement if ηe > 10−4 and
marked for derefinement if ηe < 10−8. Significant per-
formance gains are seen if this p–refinement is used with
dynamic load balancing. As an example, a speed-up of
around 1.6X was observed for our 3–level p-adaptive
method, running on 64 compute cores. Strong and weak
scaling studies were also performed on grizzly. The fig-
ure on the right quantifies the excellent scalability of the
CG and DG hydro solvers in Quinoa.

5.3 Reconstructed discontinuous Galerkin finite element method for multi-material flows

We also explored the extension of a reconstructed discontinuous Galerkin (rDG) method to extend the exist-
ing DG methods to multi-material shock hydrodynamics. The velocity equilibrium multi-material equations
[11] are considered in this work. The Eulerian form of this multi-material system of equations can be
expressed as,

∂U
∂t

+
∂F j

∂x j
+D = S,

U =

αk

αkρk
ρui

αkρkEk

 , F j =

0

αkρku j

ρuiu j + pδi j

αkρkEku j

 , D =

u j

∂αk
∂x j

0
0

αk pk
∂u j
∂x j

+Yku j
∂p
∂x j

 , S =

Sα,k

0
0

−pSα,k

 ,

5

where k = 1,2, ...,m and m is the number of materials. αk is the volume-fraction of material-k. The overbar,
·, represents bulk material properties such as density ρ, pressure p, and internal energy ρe. The specific total
energy of material k is, Ek = ek +u ju j/2. Yk = αkρk/ρ is the mass fraction of material k. The source term
Sα,k corresponds to the volume-fraction redistribution due to compaction, owing to the different degrees
of compressibility of the different materials. It has the effect of a finite-rate pressure-relaxation. Note
that although the material total energy equations are written in a non-conservative form, the mixture total
energy equation (ρE = ∑k αkρkEk) is a conservative equation, implying that total energy is conserved. A
finite pressure-relaxation is used as a means to redistribute volume changes due to compression (shocks)
and expansions (rarefaction waves) between materials depending on their compressibilities. The pressure-
relaxation term in the form proposed [12] is used. The volume change redistribution is given as,

Sα,k =
1
τ
(pk− p∗)

αk

Kk
, where p∗ =

∑k

(
pk

αk
Kk

)
∑k

αk
Kk

, and τ = cτ max
k

(
h
ak

)
.

where p∗ is the pressure that the multi-material cell is expected to equilibriate at, if given sufficient time.
Kk = ρka2

k is the bulk modulus of material k, and τ is the pressure-equilibration time-scale.

10-6

10-5

10-4

10-3

10-2

10-1

 0.0001 0.001 0.01

2.75x
Faster

E
rr

o
r

Cost per time-step (sec.)

1st order FV

2nd order FV

2nd order DG

3rd order rDG

Error-reduction with mesh refinement for multi-material
test. Black dashed-line indicates how rDG is 2.75X faster
to achieve an accuracy of 10−3 (yellow-bar)

Here the constant cτ is an adjustable parameter in the
pressure relaxation time-scale which affects the pressure
equilibration rate of the materials in mixed cells. Set-
ting cτ to infinity amounts to no pressure relaxation. If cτ

is set to a very small number, stiff pressure relaxation is
implied, and an operator-splitting procedure is required
for solving this stiff-relaxed system. Here, a value of
cτ =

1
5 ρmin,e/ρmax,e is used, so that the formulation re-

mains problem-independent. The order of accuracy and
the reduction of numerical error with increasing compu-
tational cost per time step (polynomial order) was ver-
ified to be 3rd-order, indicating significant cost savings
for a desired error level. Numerical experiments on prob-
lems such as a water-air shock tube and a 3-material shock tube demonstrate consistent and monotonic solu-
tions for shocked problems with materials having widely varying bulk modulii, see figure on the next page.
The rDG method has great potential to improve solution accuracy, both, near material interfaces, as well as
in single-material regions, for a lower computational costs.

6 Adaptive mesh refinement

Adaptive mesh refinement test problem, after taking 4 re-
finement steps, on 4 CPUs, correctly detecting large gra-
dients based on the solution gradients and yielding a con-
forming mesh.

The adaptive mesh refinement (AMR) algorithm closely fol-
lows [13]. This is a mesh refinement and derefinement al-
gorithm specific to tetrahedra-only meshes. Pure-tetrahedra
meshes are popular in aerospace engineering because tetrahe-
dra can be used to fill arbitrarily complex geometries and high-
quality, parallel, and fully automatic mesh generators have
been extensively researched and available. The AMR algo-
rithm in [13] always yields a conforming mesh (without hang-
ing nodes) and never de-refines the mesh beyond the origi-
nal (coarsest) mesh. The former enables software modularity,
since the solver does not need to be specialized due to mesh
refinement, and the latter makes enforcing physical conservation properties during mesh refinement straight-
forward.

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.2 0.4 0.6 0.8 1

D
e

n
s
it
y

x

FV2
DG(P1)

rDG(P1P2)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

n
s
it
y

x

FV2
DG(P1)

rDG(P1P2)

Fluid density for multi-material problems, computed by 3 different numerical methods: FV2: 2nd-order finite volumes, DG(P1):
2nd-order DG, rDG(P1P2): 3rd-order reconstructed DG. (Left) liquid-gas shock tube test problem; (right) 3-material shock tube.

We first implemented the AMR algorithm in serial to ensure we fully understand the algorithm logic
and to enable the maximum degree of independence of the AMR algorithm from its client code, the rest
of the solver. This helped us defined a clean, simple, and easy to use interface to the AMR library. We
then connected the AMR library into the rest of the Quinoa code in a way that the AMR library does not
know anything about parallel computing or Charm++, as it only works on a partition of the mesh and is
independent of communication primitives or any parallel code. The glue code that uses the AMR library is
an asynchronous distributed-memory-parallel algorithm, relying on Charm++’s SDAG constructs, to enable
overlap of computational tasks and communication. The final parallel AMR algorithm is also an iterative
one, since it must ensure that individual decisions for refinement or derefinement, made by independent
CPUs on their mesh partitions, connect their partial meshes along their interfaces in a way that yields con-
forming meshes.

At this time, the AMR algorithm is not yet fully functional: derefinement is incomplete in parallel.

7 Subcontracts
In FY2 we have set up 2 subcontracts within this project with

1. Charmworks, Inc., to get help on improving computational performance and load balancing with the
Charm++ runtime system, and

2. North Carolina State University, to learn about, initiate research collaboration in, and develop a capa-
bility of modern discontinuous Galerkin finite element methods.

Both subcontracts greatly helped the project and we have established two avenues for external collaboration.

7.1 Charmworks subcontract

Our subcontract with Charmworks has set out to include work in the following 4 areas:

1. Startup performance. Instrument, analyze, and optimize startup performance, e.g., I/O and parallel
communication performance. Identify potential issues and suggest performance improvements.

2. Solution performance. Instrument, analyze, and optimize per-time-step performance. Identify poten-
tial issues and suggest performance improvements.

3. Fault tolerance. Setup tests for migration methods using checkpoints with the same, more, or fewer
CPUs, compared to the initial number of CPUs, using one of Charm++’s built-in load-balancers, e.g.,
RotateLB. Assist in developing solutions to issues identified, and demonstrate fault tolerance against
hardware failure during runtime.

7

4. Load balancing with and without adaptive mesh refinement (AMR). With and without exercising
AMR, analyze execution behavior, identify performance deficiencies, and test Charm++’s built-in
dynamic remapping strategies. Without sacrificing generality, to the extent as necessary and pos-
sible, fine-tune existing strategies to Quinoa, and/or develop a custom application-specific dynamic
load-balancing strategy.

Together with Charmworks we have analyzed both the startup and time-stepping performance by pro-
filing their individual steps and tasks, using Charm++’s Projection tool. As a result, we have identified a
major performance bottle-neck during problem setup. With the help of Neil Carlson, who suggested a new
algorithm, have completely re-written the crucial step. This eliminated 3 all-to-all communication steps
and replaced them by a new 2-step algorithm that only involves cheaper and more scalable point-to-point
communication steps, working on a smaller data set compared to the previous solution. As a result, the
inefficient setup step became practically undetectable by the performance analysis tool. Testing here used a
DG method on a 18-million-cell computational mesh on 10 grizzly compute nodes, equivalent to 360 CPUs,
see also the figure on the next page.

Besides performance analysis and improvement work with the Charmworks employees, we have also
received extensive and crucial help regarding the proper use of Charm++’s bound arrays, which are dis-
tributed Charm++ arrays, holding arbitrary data, e.g., parts of the mesh and the solution, but which they
migrate together during load balancing.

We have also received help implementing the checkpoint/restart functionality in Quinoa. This is now
automatically regression-tested in both serial and parallel. In the future, this will also be used for checkpoints
and restarts where the number of partitions saved does not equal the number of CPUs the restart is performed
with. This will yield to a usability feature that allows restarting using different number of CPUs. This feature
is also the first step towards on-disk and in-memory fault tolerance, which are built-in Charm++ runtime
system features, but in Quinoa still need some work to be fully functional.

CPU utilization of a single compute node on grizzly during a single
time step, exercising the p–adaptive DG algorithm, without (top) and
with (bottom) automatic load balancing. Black means idle while the
various colors correspond to different tasks (the light blue is the right
hand side computations, taking up most of the computational cost, as
expected). The image has been captured from Projections, Charm++’s
performance analysis tool.

With the help of the Charmworks employees, we
have also ported the code to Charm++’s SMP-mode.
This is similar to MPI+X, where X denotes some
form of threading (e.g., pthreads, OpenMPI, etc.),
allowing efficiently running a parallel code on fat
nodes (containing many CPUs) connected by a net-
work. In MPI+X or in Charm++’s SMP mode one
configures a single (or a few) MPI rank(s) (or log-
ical node) per physical compute node which then
spawn their own threads, instead of running MPI ev-
erywhere. This may lead to significant performance
improvements, especially on accelerators and GPUs.
In some cases the performance improvements com-
pared to Charm++’s non-SMP mode were 300%.

Since the AMR functionality is not yet complete,
see the section on AMR above, we did not, so far, ex-
ercise AMR with Charm++’s load balancing. How-
ever, we have also implemented polynomial-degree
refinement in 3D using an asynchronous distributed-
memory-parallel algorithm using a p–adaptive cell-
centered discontinuous Galerkin finite element algorithm and exercised it for single-material verification
cases on 3D unstructured meshes with Charm++’s load balancing capabilities, see the figure above. We used
Charm++’s automatic load balancing framework with our p–adaptive DG algorithm with great success. As

8

Performance implications and improvements of rewriting an inefficient algorithm during Quinoa’s problem setup phase, setting up basic commu-
nication data structures, required by all types of (i.e., node-, as well as cell-centered) discretization schemes, after mesh partitioning. The figure
depicts 3 results as a result of improving the algorithm in 2 steps. In each sub-figure (top, middle, bottom) the horizontal axis is wall-clock time,
while the vertical axis is CPU utilization, different colors denoting different tasks taken during setup and time-stepping (dark yellow on the right).
The leftmost parts in green and black roughly correspond to parallel distributed read of the computational mesh (not every CPU reads the mesh).
The rightmost part in dark yellow denotes time stepping. The bright yellow preceding the dark yellow are setting up additional communication data
structures for cell-centered discretizations, e.g., DG methods. Both the leftmost and rightmost parts (green with black, bright and dark yellow) are
the same across all 3 sub-figures. The figure shows, in light blue, the initial algorithm on top, involving 3 all-to-all communication steps with plenty
of idle CPU time, denoted by black. The middle image shows the effect of a new point-to-point algorithm that works on smaller data, indicating
sizable performance improvement as the lengths of the light blue sections, together with their black idle periods, are reduced. The bottom shows
the final result, which includes replacing the entire algorithm with the more efficient one, where the light blue section is practically unmeasurable
compared to the rest of the tasks. All performance data were collected using Charm++’s Projections tool with an 18-million-cell mesh on 360 CPUs
on grizzly.

9

also expected with AMR, p–refinement may lead to order-of-magnitude load imbalances across a large dis-
tributed problem. We have successfully employed different Charm++ load balancers with p–refinement that
automatically homogenized computational load, which significantly improved on unbalanced performance.
In some cases the improvement was over 200% and this algorithm only involved the two least expensive DG
schemes, P0 and P1. We expect the improvement of the adaptive algorithm, involving P0, P1, and P1, even
larger. See also the section on the solution-adaptive cell-centered DG algorithm above.

7.2 NCSU subcontract

With our subcontract to NCSU we have worked on discontinuous Galerkin finite element methods for fluids.
This involved implementation of multiple variants of the method, testing, and verification on smooth and
discontinuous test problems, and exploration of a p-refinement algorithm.

We have successfully implemented 5 different DG algorithms: (1) P0, a basic algorithm that is first-
order accurate (equivalent to a cell-centered finite volume method), (2) P1, a second-order accurate method,
(3) P2, a third-order accurate method, and two adaptive schemes: (4) a basic p–adaptive method that can
switch between P0 and P1 based on local error estimation, and (5) a more advanced p–adaptive method that
switches among P0, P1, and P2. All of these methods are implemented in a way that the code allows to
easily configure each based on user input. All of these methods are implemented in a distributed-memory-,
and task-parallel fashion for 3D unstructured meshes. For more information on the DG methods, see the
sections above on the hydrodynamics methods. This work has predominantly been performed by the Aditya
Pandare and Weizhao Li, see also the sections below on student involvement. We have also successfully used
p–adaptation with Charm++’s automatic load balancing. See also the section above on the Charmworks
subcontract.

8 Student involvement
During this project we have worked with several students, whose work is described next.

8.1 Aditya Pakki, University of Utah

Aditya was a Data Science at Scale summer student and implemented our ROOT writer capability. ROOT is
a software package developed by CERN for visualization and data analysis of very large, i.e., petabyte-scale,
data sets. The library has been developed for decades and it is the de-facto standard in experimental particle
physics. Besides implementing a ROOT file format reader/writer and associated regression tests, Aditya has
written code for assessing ROOT’s capabilities on our grizzly cluster using a large turbulence simulation
dataset from Daniel Livesecu and Denis Aslangil.

Data analysis with ROOT in parallel on a 10243-cell, turbulence
dataset from direct numerical simulation of the homogeneous
Rayleigh-Taylor instability by Daniel Livescu and Denis Aslangil.
The ROOT code here computed the time-evolution of the turbulent
kinetic energy from multiple data files in parallel, without having
to visualize the data but having to churn through gigabytes of it.

We usually use ParaView for visualization. However,
we are also interested in alternative ways of data anal-
ysis. The reason we are interested in using ROOT for
data analysis, because it can work with very large data
sets that may be distributed across multiple geographi-
cal locations and even behind multiple server protocols.
Beside using an interactive graphical user interface, data
analysis in ROOT may also be driven by a command-line
interpreter that understand C++ code in a read-eval-print-
loop (REPL) fashion, with access to a large library of
various statistical data analysis functionality. In essence,
ROOT is interactively programmable, thus encourages
easy prototyping the visualization and data analysis code
or scripting. Users of Quinoa may need to visualize very
large simulation data in the future where the user knows

10

https://root.cern.ch/

High-level view of our findings and how code looks like with the vectorization abstractions explored.

exactly how to extract some derived quantity from the overall data set but not interested in or cannot load
the intermediate raw data, but wants to write code to get the result. ROOT allows a potentially very different
workflow compared to what we usually do with physics simulations, which may be an interesting alternative
for very large simulation data sets in the future.

8.2 Gary Collins, University of Tennessee, Joshua Barnett, Georgia Institute of Technology

The promise of vectorization abstractions.

Gary and Joshua were two XCP’s Computational Physics Summer School
students who worked on exploring vectorization techniques. The goal for
the summer project was to explore various software abstractions available
for vectorizing code and learn what works best for solving the Navier-
Stokes equation on unstructured meshes using our node-centered contin-
uous Galerkin finite element algorithm. We set out to explore and answer
the following questions. Without vectorization, roughly 90% of hardware
performance is left on the table (with Xeon Phi’s, e.g., Knights Landing
series). Most compilers do vectorize automatically if they can, but do
they do it for production-style code and for unstructured-mesh algorithms for non-trivial nested loops full
of indirect addressing? Besides the performance increase using vectorization, what are the costs regarding
portability, code readability, and maintainability?

Besides working on our Navier-Stokes solver, Gary and Joshua have also analyzed the theoretical peak
of simpler, linear algebra algorithms, involving matrices and vectors, such as b = k ·a, C = A[b1,b2, . . .],
and have also vectorized a Schrödinger average-atom solver with co-mentor Ondřej Čertı́k.

Gary and Joshua worked on a simplified code that represented the important features of Quinoa’s node-
centered continuous Galerkin finite element algorithm using 3D unstructured meshes on a single CPU. They
explored vectorization using compiler auto-vectorization, OpenMP 4.0 (no threading only SIMD), Intel’s

11

Example vectorization performance gains after vectorizing our node-centered continuous Galerkin finite element unstructured-mesh hydro solver
using various abstractions for vectorization.

SPMD Program Compiler (ISPC), as well as 3 C++ libraries: XSIMD, libsimdpp, and Boost.SIMD. A
high-level view of our findings, how code looks like with the various abstractions, and example performance
gains on our unstructured-mesh finite element solver are illustrated in the figures above. Our overall findings
on the use of vectorization abstractions are as follows:

• The compiler will not auto-vectorize complex code.
• Easy to conceptualize⇐⇒ easy to use (libraries).
• Libraries and ISPC require new code.
• Automatic vectorization and OpenMP are limited by the compiler.
• Libraries give the best performance but most are intrusive, i.e., require significant code.

8.3 Aditya Pandare, Weizhao Li, North Carolina State University

Mandelbrot set, as a toy problem, used to
learn parallel programming in Charm++.

We have started collaborating with Prof. Hong Luo’s research group at
North Carolina State University (NCSU) in the 2nd FY. Aditya was a 4th-
year PhD student at the time and was researching discontinuous Galerkin
finite element methods for compressible hydrodynamics for single-, and
multi-material problems. Aditya has started out by learning program-
ming in Charm++ by parallelizing a small Mandelbrot set generator1 using
Charm++. He also exercised Charm++’s load balancers and verified them
in action using Charm++’s performance analysis tool, Projections. Gen-
erating a Mandelbrot set was a toy-project that does not require parallel
communication in a complex fashion as a flow solver does, thus was very a
useful way of learning the basics of programming in Charm++.

1 https://github.com/jbakosi/mandelbrot

12

https://ispc.github.io/
https://github.com/QuantStack/xsimd
https://github.com/p12tic/libsimdpp
https://github.com/agenium-scale/nsimd
https://github.com/jbakosi/mandelbrot

Time in seconds
2 4 6 8 10 12 14 16 18 20 220

CPU utilization (black for CPU at work, white
for CPU being idle) vs. time for the
calculation of a Mandelbrot diagram with 8
CPUs. Top row shows the CPU load with
regular parallelization. Bottom row shows
CPU load when applying Charm++ without
any additional code for load balancing.

By only applying Charm++ the calculation makes better utilization of CPUs and
speeds up by a factor of 2.4.

PE 0
PE 1
PE 2
PE 3
PE 4
PE 5
PE 6
PE 7

PE 0
PE 1
PE 2
PE 3
PE 4
PE 5
PE 6
PE 7

Aditya continued in Quinoa by imple-
menting a lot of low-level infrastructure-
code required for cell-centered hydrodynamics
schemes. This involve new derived data struc-
tures [14] (that were not needed for a node-
centered scheme), I/O-related routines, bound-
ary conditions on faces (instead of mesh nodes),
as well as setting up parallel communication
primitives as required by cell-centered methods
and discontinuous Galerkin schemes. As every-
thing else, this involved asynchronous distributed-memory-parallel programming and using Charm++’s
SDAG constructs and associated debugging. As a result we now have multiple hydrodynamics schemes
in the code, including modern DG schemes. About a year ago, when Aditya finished his PhD, we have hired
him as a LANL postdoc and he is currently working on research and development of multi-material DG
methods and their implementation into Quinoa.

Weizhao is another one of Prof. Luo’s student we have started working with in the last FY of the project.
He continues Aditya’s work on DG methods by exploring solution adaptation. DG methods can represent a
non-linear solution locally within a single computational cell by increasing the order of the underlying ap-
proximation polynomial, p–adaptation. By selecting the order differently based on the local error estimated
in the numerical solution, one can design a method that spends as much compute resources over a given cell
as needed and not more. This requires estimating the local numerical error and devising strategies on how
to switch among various schemes. Weizhao started out by implementing a 2nd-, and a 3rd-order accurate
DG method for single-material flows in 3D in parallel in Charm++. Then he started exploring p-adaptation
by first devising an adaptive method that can switch between 2, then another one that can switch between
3 different DG methods. At the end of FY3 this adaptive scheme now works in parallel and we have also
exercised it with Charm++’s automatic load balancing with great success. This p–adaptive method appears
to be a very promising method going forward. More details on the DG methods and load balancing with
p–refinement are given in previous sections. Our new collaboration established during this project with Prof.
Luo’s group at NCSU has been extremely fruitful and also feeds into the LANL future pipeline.

9 Publications
The following journal papers, based on this project, have been published or are in progress:

1. On the parallel implementation of our node-centered continuous Galerkin finite element algorithm for
compressible hydrodynamics of single-material flows, detailing the asynchronous task-parallel imple-
mentation and scalability to large computers, for the Journal of Parallel and Distributed Computing.

2. On a new algorithm, developed for compressible hydrodynamics of single-material flows, using a
discontinuous Galerkin finite element method, for the journal Computers & Fluids.

3. On the extension of the discontinuous Galerkin algorithm to a solution-adaptive one and its asyn-
chronous task-parallel implementation, utilizing Charm++’s automatic load-balancing.

4. On a new algorithm for compressible multi-material flows, using a reconstructed discontinuous Galerkin
finite element method, under review in International Journal for Numerical Methods in Fluids.

5. On a new algorithm, developed for compressible hydrodynamics of multi-material flows, using a
reconstructed discontinuous Galerkin finite element method, its parallel implementation, and its scal-
ability with Charm++’s automatic load balancing, for the Journal of Computational Physics.

6. On the asynchronous, distributed-memory-parallel implementation of the adaptive mesh refinement
algorithm for the Journal of Parallel and Distributed Computing.

7. On a new scheme for high-speed compressible flows, published in the journal Shock Waves: A.K.

13

Pandare and H. Luo, J. Bakosi”, An enhanced AUSM+-up scheme for high-speed compressible two-
phase flows on hybrid grids, Shock Waves, 2018.

10 Conferences
We have presented material at the following meetings and conferences:

1. J. Bakosi, R.F. Bird, C. Junghans, R.S. Pavel, J. Waltz, Quinoa: Adaptive Computational Fluid Dy-
namics, 15th Annual Workshop on Charm++ and its Applications, Urbana-Champaign, IL, 2017.

2. J. Bakosi, R.F. Bird, C. Junghans, A.K. Pandare, H. Luo, Concept-based runtime polymorphism with
Charm++ chare arrays using value semantics, 16th Annual Workshop on Charm++ and its Applica-
tions, Urbana-Champaign, IL, 2018.

3. A.K. Pandare, J. Bakosi, H. Luo, Progress towards development of discontinuous Galerkin finite-
element methods for compressible flows using Charm++, 16th Annual Workshop on Charm++ and its
Applications, Urbana-Champaign, IL, 2018.

4. J. Bakosi, R.F. Bird, C. Junghans, Quinoa: Adaptive Hydrodynamics on Charm++, Applied Com-
puter Science and Programming Models/Co-Design Meeting, Albuquerque, NM, 2018.

5. W. Li, A.K. Pandare, J. Bakosi, H. Luo, Adaptive Discontinuous Galerkin Method for Compressible
Flow Using Charm++, 17th Annual Workshop on Charm++ and its Applications, Urbana-Champaign,
IL, 2019.

6. A.K. Pandare, J. Bakosi, J. Waltz, Discontinuous Galerkin Methods for Compressible Multi-Material
Flows, 20th International Conference on Fluid Flow Problems (FEF-2019), Chicago, IL, 2019.

7. J. Bakosi, R.F. Bird, C. Junghans, A.K. Pandare, J. Waltz, W. Li, H. Luo, E. Bohm, E. Mikida,
E. Ramos, L. Kale, Adaptive Large-Scale Hydrodynamics using Charm++, Institutional Computing
User Group Meeting, LANL, 2019.

8. J. Waltz, A.K. Pandare, J. Bakosi, A Finite Element ALE Method for Multi-Material Flows, 20th
International Conference on Finite Elements in Fluids, Chicago, Illinois, March 31-April 3, 2019.

9. A.K. Pandare, J. Waltz, J. Bakosi, A Discontinuous Galerkin method for Non-Equilibrium Multi-
Material Flows on Unstructured Grids, American Institute of Aeronautics and Astronautics (AIAA)
Science and Technology Forum and Exposition, 2019.

10. J. Waltz, A.K. Pandare, J. Bakosi, A direct finite element ALE method for non-equilibrium multi-
material flows, American Institute of Aeronautics and Astronautics (AIAA) Science and Technology
Forum and Exposition, 2019.

11. W. Li, H. Luo, A.K. Pandare, J. Bakosi, A p-adaptive Discontinuous Galerkin Method for Compress-
ible Flows Using Charm++, American Institute of Aeronautics and Astronautics (AIAA) Science and
Technology Forum and Exposition, 2019.

11 Posters
We have prepared and presented the following posters:

1. J. Barnett, G. Collins, J. Bakosi, O. Čertı́k Vectorize! Bridging the Performance–Productivity Gap of
Vectorization, X Computational Physics Division Summer School, 2017, LA-UR-17-29526.

2. A.K. Pandare, J. Waltz, J. Bakosi, Multi-Material Shock Hydrodynamics using a Reconstructed Dis-
continuous Galerkin Method, LANL Postdoc Symposium 2019, LA-UR-19-28581.

12 Follow-On projects
This project will continue to be funded by 2 (or potentially 3) sources of funding:

1. “Engineering, Stockpile Assessments, and Responsiveness (ESAR)” program. This exploratory work,
starting in FY20, is targeted on implementing prototype capabilities to enable physics and algorithms

14

required to fill a capability gap in LANL’s Engineering tool-chain in the ESAR program. The tar-
geted physics capability is large-scale engineering-style (as opposed to physics-style) computational
fluid dynamics of aerospace-type problems, eventually targeting large-scale (in terms of problem size
as well as using large HPC resources) fluid-structure interaction, involving coupled fluid and solid
dynamics. POC: Jacob Waltz.

2. A new LDRD project, “Adaptive high-order finite element ALE methods for multi-material hydrody-
namics“. This is an LDRD-ER, starting in FY20, that will do R&D towards novel hydrodynamics
methods for multi-material problems using discontinuous Galerkin methods. This exploratory work
whose end-product, a new hydrodynamics method, will be implemented, verified, and tested at large
scales and for large problems in the Quinoa code. PI: Jacob Waltz.

3. Charmworks, Inc. have sought us out to collaborate within a Small Business Innovation Research
(SBIR) or Small Business Technology Transfer (STTR) Program of the DOE. This proposal is being
written with the goal to increase the technology readiness level of Quinoa and to ultimately increase
the capability in LANL’s Engineering tool-chain with a new production-quality software tool, suitable
for large-scale adaptive computational fluid and coupled solid dynamics simulations over complex 3D
engineering problem geometries, using large HPC resources effectively. If this proposal is funded, it
will give us an opportunity to further develop our software tool and make it significantly more user-
friendly.

13 Acknowledgments
Research presented in this report was supported by the Laboratory Directed Research and Development
program of Los Alamos National Laboratory under project number LDRD-20170127-ER.

References
[1] Charm++: Parallel programming framework. http://charmplusplus.org.

[2] R. Löhner, K. Morgan, J. Peraire, and M. Vahdati. Finite element flux-corrected transport (FEM–FCT)
for the Euler and Navier–Stokes equations. Int. J. Numer. Meth. Fl., 7(10):1093–1109, 1987.

[3] J. Waltz, T.R. Canfield, N.R. Morgan, L.D. Risinger, and J.G. Wohlbier. Verification of a three-
dimensional unstructured finite element method using analytic and manufactured solutions. Computers
& Fluids, 81:57 – 67, 2013.

[4] J. Waltz, T.R. Canfield, N.R. Morgan, L.D. Risinger, and J.G. Wohlbier. Manufactured solutions for
the three-dimensional euler equations with relevance to inertial confinement fusion. J. Comp. Phys.,
267:196 – 209, 2014.

[5] J. Bakosi, R.F. Bird, and C. Junghans. Quinoa: Adaptive Hydrodynamics on Charm++. In Applied
Computer Science and Programming Models/Co-Design Meeting, Albuquerque, NM, 2018.

[6] B Cockburn, S Hou, and C-W Shu. The Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws. iv. the multidimensional case. Mathematics of Computation,
54(190):545–581, 1990.

[7] S J Sherwin and G E Karniadakis. A new triangular and tetrahedral basis for high-order (hp) finite
element methods. International Journal for Numerical Methods in Engineering, 38(22):3775–3802,
1995.

[8] H Luo and C Pozrikidis. A Lobatto interpolation grid in the tetrahedron. IMA journal of applied
mathematics, 71(2):298–313, 2006.

15

http://charmplusplus.org

[9] S. Gottlieb and C-W. Shu. Total variation diminishing Runge-Kutta schemes. Mathematics of compu-
tation of the American Mathematical Society, 67(221):73–85, 1998.

[10] F Naddei, M de la Llave Plata, V Couaillier, and F Coquel. A comparison of refinement indicators for
p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods. Journal
of Computational Physics, 376:508–533, 2019.

[11] M Pelanti and K-M Shyue. A numerical model for multiphase liquid–vapor–gas flows with interfaces
and cavitation. International Journal of Multiphase Flow, 113:208–230, 2019.

[12] V A Dobrev, T V Kolev, R N Rieben, and V Z Tomov. Multi-material closure model for high-order
finite element Lagrangian hydrodynamics. International Journal for Numerical Methods in Fluids,
82(10):689–706, 2016.

[13] J. Waltz. Parallel adaptive refinement for unsteady flow calculations on 3D unstructured grids. Int. J.
Numer. Meth. Fl., 46(1):37–57, 2004.

[14] J. Waltz. Derived data structure algorithms for unstructured finite element meshes. Int. J. Numer. Meth.
Eng., 54(7):945–963, 2002.

16

	Summary
	Accomplishments at a glance
	A brief overview of Charm++
	Production-style code infrastructure
	Hydrodynamics algorithms
	Node-centered continuous Galerkin finite element method
	Solution-adaptive cell-centered discontinuous Galerkin finite element method
	Reconstructed discontinuous Galerkin finite element method for multi-material flows

	Adaptive mesh refinement
	Subcontracts
	Charmworks subcontract
	NCSU subcontract

	Student involvement
	Aditya Pakki, University of Utah
	Gary Collins, University of Tennessee, Joshua Barnett, Georgia Institute of Technology
	Aditya Pandare, Weizhao Li, North Carolina State University

	Publications
	Conferences
	Posters
	Follow-On projects
	Acknowledgments

